Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy.
نویسندگان
چکیده
Myotonic dystrophy type 1 (DM1) is an RNA dominant disease in which mutant transcripts containing an expanded CUG repeat (CUG(exp)) cause muscle dysfunction by interfering with biogenesis of other mRNAs. The toxic effects of mutant RNA are mediated partly through sequestration of splicing regulator Muscleblind-like 1 (Mbnl1), a protein that binds to CUG(exp) RNA. A gene that is prominently affected encodes chloride channel 1 (Clcn1), resulting in hyperexcitability of muscle (myotonia). To identify DM1-affected genes and study mechanisms for dysregulation, we performed global mRNA profiling in transgenic mice that express CUG(exp) RNA, when compared with Mbnl1 knockout and Clcn1 null mice. We found that the majority of changes induced by CUG(exp) RNA in skeletal muscle can be explained by reduced activity of Mbnl1, including many changes that are secondary to myotonia. The pathway most affected comprises genes involved in calcium signaling and homeostasis. Some effects of CUG(exp) RNA on gene expression are caused by abnormal alternative splicing or downregulation of Mbnl1-interacting mRNAs. However, several of the most highly dysregulated genes showed altered transcription, as indicated by parallel changes of the corresponding pre-mRNAs. These results support the idea that trans-dominant effects of CUG(exp) RNA on gene expression in this transgenic model may occur at the level of transcription, RNA processing and mRNA decay, and are mediated mainly but not entirely through sequestration of Mbnl1.
منابع مشابه
Transcriptional changes and developmental abnormalities in a zebrafish model of myotonic dystrophy type 1
Myotonic dystrophy type I (DM1) is a multi-system, autosomal dominant disorder caused by expansion of a CTG repeat sequence in the 3'UTR of the DMPK gene. The size of the repeat sequence correlates with age at onset and disease severity, with large repeats leading to congenital forms of DM1 associated with hypotonia and intellectual disability. In models of adult DM1, expanded CUG repeats lead ...
متن کاملWoodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3' untranslated region transcripts.
The woodchuck post-transcriptional regulatory element (WPRE) can naturally accumulate hepatitis transcripts in the cytoplasm, and has been recently exploited as an enhancer of transgene expression. The retention of mutant myotonic dystrophy protein kinase (DMPK) transcripts in the nucleus of myotonic dystrophy (DM) cells has an important pathogenic role in the disease, resulting in pleiotropic ...
متن کاملCongenital myotonic dystrophy-an RNA-mediated disease across a developmental continuum.
Thomas and colleagues (pp. 1122-1133) demonstrate severe dysregulation of developmentally regulated alternative splicing and polyadenylation in congenital myotonic dystrophy (CDM). In doing so, they also highlight the importance of these post-transcriptional processes during normal fetal muscle development. Finally, they generate and characterize a mouse model of CDM that lacks all three Muscle...
متن کاملRNA in brain disease: no longer just "the messenger in the middle".
RNA research has made great progress in recent years. A variety of unforeseen complexities have been identified, many with relevance to human brain disease. For example, neurologic illnesses may arise because of perturbations in distinct but interrelated tiers of RNA-based genetic regulation: pre-mRNA splicing; nonsplicing RNA modifications; and mRNA translational regulation. Furthermore, there...
متن کاملETR-1, a homologue of a protein linked to myotonic dystrophy, is essential for muscle development in Caenorhabditis elegans
Post-transcriptional gene processing by RNA-binding proteins (RBPs) has crucial roles during development [1] [2]. Here, we report the identification of ETR-1 (ELAV-type RNA-binding protein), a muscle-specific RBP in the nematode Caenorhabditis elegans. ETR-1 is related to the family of RBPs defined by the protein ELAV, which is essential for neurogenesis in the fruit fly Drosophila; members of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2009